
(Whe r DO;,d ("tred _______________________

AD-A210 028 IENTATION PAGE srCLio ' r
12 . 60VI ACCESS1k hl- 3. Ri IP|[kl "S CA1A,.OL kUwiR

4.- 17 llL 1 (8010 wbt'0) $. lYP. Of NEPDA' & PL]OD COv R[D

Ada Compiler Validation Summary Report: CAP 27 May 1988 to 27 May 1989
Industry Ltd., CAPTACS-E286, V2.1, MICROVAX (Host) to

INTEL 80286 (Target), 880528NI.09065 6. PLRFOftM1$'kc,. RLP0R. mjLR

7. AUINORis) I. CON7RACT OR 6RAN' hiIER(j)

WrigTi-Patterson AFB
Dayton, OH, LSA
U. PERFORKIK4 OR ANIZATIJO AND ADDRESS 10. PRO&RAM IL(MiNI. PRJ!"7. 7AS9.

AREA & WORK Uh:T NUMBERS

Wright-Patterson kFB
Dayton, OH, USA

11. IOOIRO.LI G OrfiCE hiAM£ AhO ADORI; SSREOT ;,'

Ada Joint Program Office
United States Department of Defense 1. NU&j w F
Washington, DC 20301-3081

14. ON1DT ;hu AGENdY NAML & ADDRESS(fdifferent'from Controlling Offce) 15. SECURlIH CLASS (oftrisreport)
UNCLASSIFIED

Wright-Patterson AFB Is&. EE sjIAIN'~%RDN
Dayton, OH, LSA N/A

If,. DIS1R1BJTIOh STATEMENT (ofthisRepor)

Approved for public release; distribution unlimited. D TI-C

17. DISIRB2 IO0N SIVEME N, (of the abSrraTclteiffd iock 2C t1fafercn? fomppo

UN'LASS!FIED Repw

IE. SUPP,'.h-AP1 NOTIES

19. KEY ,iR6,S (Continue Ofn reverse sid f necemsd3 anaidenif) b) block number)

Ada Procrar.-ing language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. AS$7RA: I (Continue on reverse Side ofnecessry and Ocentif b, block number)

CAP Industry Ltd., CAPTACS-E286, V2.1, MICROVAX under MICROVMS, V4.6 (Host) to INTEL

80286 bare computer (Target), ACVC 1.09.

89 6 0 w 7 O0
DD ,'o 1473 DI1Izo, of I NOV 65 IS O6SoLt,,



Ada* Compiler Validation Summary Report:

Compiler Name: CAPTACS-E286, V2.1

Certificate Number: #880528N1.09065

Host: Target:
MICROVAX under INTEL 80286
MICROVMS, bare computer

V4.6

Testing Completed 27 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

-,r e Z jAccessi on For
VTIS CRA&,

The National Computing Centre Ltd OTT'r T.
Jane Pink Unan .nocd C
Oxford Road JustIElc, at Ion
Manchester, MI 7ED 6

United Kingdom B
[Distri but ion/
Avail - i i ty Codes

lAvc1il and/or

. ,_ Dist Special

(Ada Validation Organization L
Dr. John F. Kramer
Institute for Defense Analyses
Alcxandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Washington D.C. 20301

Ada is a registered trademark of the United States Government *(Ada Joint Program Office).



Ada* Compiler Validation Summary Report:

Compiler Name: CAPTACS-E286, V2.1

Certificate Number: #880528N1.09065

Host: Target:
MICROVAX under INTEL 80286
MICROVMS, bare computer

V4.6

Testing Completed 27 May 1988 Using ACVC 1.9

This report has been reviewed and is approved.

The National Computing Centre Ltd
Jane Pink
Oxford Road
Manchester, M1 7ED
United Kingdom

Ada Validation Organization
Dr. John F. Kramer .
Institute for Defense Analyses

Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Washington D.C. 20301

- Ada is a registered trademark of the United States Government *(Ada Joint Program Office).

L II II



AVF Control Number: AVF-VSR-90502/18

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #880528N1.09065

CAP Industry Ltd
CAPTACS-E286, V2.1
HOST: MICROVAX

TARGET:INTEL 80286

Completion of On-site Testing:
27 May 1988

Prepared By:
The National Computing Centre Limited

Oxford Road
Manchester M1 7ED

United Kingdom

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C. 20301-3081



TABLE OF CONTENTS

CIIAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT ...1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT ...1-2
1.3 REFERENCES ...1-3
1.4 DEFINITION OF TERMS ...1-4
1.5 ACVC TEST CLASSES ...1-5

CIIAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED ...2-1
2.2 IMPLEMENTATION CHARACTERISTICS ...2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS ...3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS ...3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER ...3-2
3.4 WITHDRAWN TESTS ...3-2
3.5 INAPPLICABLE TESTS ...3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS ...3-5
3.7 ADDITIONAL TESTING INFORMATION ...3-6

3.7.1 Prevalidation ...36
3.7.2 Test Method ...36
3.7.3 Test Site ...3-7

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

Table of Contents Page 1 of 1



CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a specific Ada compiler conforms to the
Ada Standard, ANSI/MIL-STD-1815A. This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler Validation Capability C). -An Ada
compiler must be implemented according to the Ada Standard, and any implementation-dependent features must
conform to the requirements of the Ada Standard. The Ada Standard must be implemented in its entirety, and
nothing can be implemented that is not in the Standard.

Even though all validated Ada Compilers conform to the Ada Standard, it must be understood that some
diffcrcnces do exist between implementations. The Ada Standard permits some implementation dependencies-
-for example, the maximum length of identifiers or the maximum values of integer types. Other differences
between compilers result from the characteristics of particular operating systems, hardware, or implementation
strategies. All the dependencies observed during the process of testing this compiler are given in this report. -,

The information in this report is derived from the test results produced during validation testing. The validation
process includes submitting a suite of standardized tests, the ACVC, as inputs to an Ada compiler and evaluating
the results. The purpose of validating is to ensure conformity of the compiler to the Ada Standard by testing
that the compiler properly implements legal language constructs and that it identifies and rejects illegal language
constructs. The testing also identifies behaviour that is implementation dependent but permitted by the Ada
Standard. Six classes of tests are used. These tests are designed to perform checks at compile time, at link
time, and during execution.

Chapter 1-Page 1 of 7



INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada compiler. Testing was carried
out for the following purposes:-

To attempt to identify any language constructs supported by the compiler that do not conform
to the Ada Standard
To attempt to identify any language constructs not supported by the compiler but required by

the Ada Standard

To determine that the implementation-dependent behaviour is allowed by the Ada Standard.

Testing of this compiler was conducted by NCC under the direction of the AVF according to procedures
established by the Ada Joint Program Office and administered by the Ada Validation Organization (AVO). On-
site testing was completed 27 May 1988 at Orion Court, Kenavon Drive, Reading.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may make full and free public disclosure
of this report. In the United States, this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers, operating systems, and compiler
versions identified in this report.

Chapter 1-Page 2 of 7



INTRODUCTION

The organizations represented on the signature page of this report do not represent or warrant that all
statements set forth in this report are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those prescnted.

Copies of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:-

The National Computing Centre Ltd
Oxford Road
Manchester MI 7ED
United Kingdom

Questions regarding this report or the validation test results should be directed to the AVF listed above or to:-

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/MIL-STD-1815A, February 1983 and ISO
8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SotTech, Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

Chapter 1-Page 3 of 7



INTRODUCTION

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capabil;ty. The set of Ada programs that tests the
conformity of an Ada compiler to the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant to the point addressed by a
comment on the Ada Standard. These comments are given a unique identification
number having the form Al-ddddd,

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for conducting compiler validations
according to procedures contained in the Ada Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has oversight authority over all AVF
practices for the purpose of maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical support for Ada validations
to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this report, a compiler is any
language processor, including cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that demonstrates nonconformity
to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately support in a way other than the

one expected by the test.

Passed test An ACVC test for which a compiler generates the expected result.

Chapter 1-Page 4 of 7



INTRODUCTION

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a particular feature or a
combination of features to the Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used
test to check conformity to the Ada Standard. A test may be incorrect because it has an

invalid test objective, fails to meet its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains both legal and illegal Ada
programs structured into six test classes: A., B, C, D, E, and L. The first letter of a test name identifies the
class to which it belongs. Class A, C, D, and E tests are executable, and special program units are used to
report their results during execution. Class B tests are expected to produce compilation errors. Class L tests
are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled and executed. There are no explicit
program components in a Class A test to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada language) are not treated as reserved
words by an Ada compiler. A Class A test is passed if no errors are detected at compile time and the program
executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable. Each test
in this class is compiled and the resulting compilation listing is examined to verify that every syntax or semantic
error in the test is detected. A Class B test is passed if every illegal construct that it contains is detected by
the compiler.

Class C tests check that legal Ada programs can be correctly compiled and executed. Each Class C test is self-
checking and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Chapter 1-Page 5 of 7



INTRODUCTION
Class D tests check the compilation and execution capacities of a compiler. Since there are no capacity
requirements placcd on a compiler by the Ada Standard for some parameters--for example, the number of
ilcniifiers permitted in a compilation or the number of units in a library--a compiler may refuse a Class D test
and still be a conforming compiler. Thercforc. if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D test compiles sucessfully, it is self-
checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE PASSED, or FAILED message when it
is compiled and executed. However, the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore, a Class E test is passed by a compiler
if it is compiled successfully and executes to produce a PASSED message, or if it is rejected by the compiler
for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving multiple, separately compiled units are
detected and not allowed to execute. Class L tests are compiled separately and execution is attempted. A Class
L test passes if it is rejected at link time--that is, an attempt to execute the main program must generate an
error message before any declarations in the main program or any units referenced by the main program are
elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support are self-checking features
of the executable tests. The package REPORT provides the mechanism by which executable tests report
PASSED, FAILED, or NOT APPLICABLE results. It also provides a set of identity functions used to defeat
some compiler optimizations allowed by the Ada Standard that would circumvent a test objective. The
procedure CHECKFILE is used to check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK-FILE is checked by a set of
executable tests. These tests produce messages that are e'amined to verify that the units are operating correctly.
If these units are not operating correctly, then the validation is not attempted.

Chapter 1-Page 6 of 7



INTRODUCTION

The text of the tests in the ACVC follow conventions that are intended to ensure that the tests are reasonably
portable without modification. For example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters. use small numeric values, and place features that may not be
supported by all implementations in separate tests. However, some tests contain values that require the test
to be customized according to implementation-specific valuce--for example, an illegal file name. A list of the
values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and demonstrate conformity to the Ada Standard
by either meeting the pass criteria given for the test or by showing that the test is inapplicable to the
implementation. The applicability of a test to an implementation is considered each time the implementation
is validated.
A test that is inapplicable for one validation is not necessarily inapplicable for a subsequent validation. Any test
that was determined to contain an illegal language construct or an erroneous language construct is withdrawn
from the ACVC and, therefore, is not used in testing a compiler. The tests withdrawn at the time of this
validation are given in Appendix D.

Chapter 1-Page 7 of 7



CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the following configuration:

Compiler: CAPTACS-E286, V2.1

ACVC Version: 1.9

Certificate Number: #880528N1.09065

Host Computer:

Machine: MICROVAX

Operating System: MICROVMS
V4.6

Memory Size: IOM Bytes

Target Computer:

Machine: INTEL 80286

Operating System: bare computer

Memory Size: 0.5M Bytes

Communications Network: RS232C Serial Link

Chaptej 2-Page 1 of 7



CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behaviour of a compiler in those areas of the
Ada Standard that permit implementations to differ. Class D and E tests specifically check for such
implementation diffcrences. However, tests in other classes also characterize an implementation. The tests
demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements nested to 65 levels, block statements
nested to 65 levels, and recursive procedures separately compiled as subunits nested to 17 levels. It
correctly processes a compilation containing 723 variables in the same declarative part. (See tests
D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer calculations having values that exceed
SYSTEM.MAXINT. This implementation processes 64 bit integer calculations. (See tests D4AO02A,
D4AO02B, D4A004A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined types LONGINTEGER and LONGFLOAT
in the package STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a value exceeding SYSTEM.MAX INT during
compilation, or it may raise NUMERIC-ERROR or CONSTRAINT-ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test E24101A.)

Chapter 2-Page 2 of 7



CONFIGURATION INFORMATION

Expression evaluation.

Apparently some default initialization expressions for record components are evaluated before any value
is checked to belong to a component's subtype. (See test C32117A.)

Assignments for subtypes are performed with the same precision as the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision. This implementation uses all extra bits for
extra range. (See test C35903A.)

No exception is raised when an integer literal operand in a comparison or membership test is outside
the range of the base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand in a fixed-point comparison or
membership test is outside the range of the base type. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real expressions is apparently round away
from zero. (See test C4AO14A.)

Array types

An implementation is allowed to raise NUMERICERROR or CONSTRAINT-ERROR for an array
having a 'LENGTH that exceeds STANDARD.INTE.GER'LAST and/or SYSTEM.MAXINT for this
implementation.

Chapter 2-Page 3 of 7



CONFIGURATION INFORMATION

Declaration of an array type or subtype declaration with more than SYSTEM.MAX INT components
raises NUMERIC-ERROR. (See test C36003A.)

No exception is raised when 'LENGTH is applied to an array type with INTEGER'LAST + 2
components. (See test C36202A.)

No exception is raised when 'LENGTH is applied to an array type with SYSTEM.MAXINT + 2
components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST raises no exception. (See
test C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST components raises
CONSTRAINT ERROR when the length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

A null array with one dimension of length greater than INTEGER'LAST may raise NUMERICERROR
or CONSTRAINTERROR either when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears to be evaluated in its entirety before
CONSTRAINT-ERROR is raised when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two- dimensional array types, the expression does not appear to be
evaluated in its entirety before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept or reject an incomplete type with
discriminants that is used in an access type definition with a compatible discriminant constraint. This
implementation accepts such subtype indications during compilation. (See test E38104A.)

Chapter 2-Page 4 of 7



CONFIGURATION INFORMATION

In assigning record types with discriminants, the expression appears to be evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the expression's subtype is compatible with
the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, index subtype checks appear to be made as choices
are evaluated. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, not all choices are evaluated before being
checked for identical bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a bound in a nonnull range of a
nonnull aggregate does not belong to an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on representation clauses used by some of the
tests. If a representation clause is used by a test in a way that violates a restriction, then the
implementation must reject it.

Enumeration representation clauses containing noncontiguous values for enumeration types other than
character and boolean types are not supported. (See tests C355021.J, C35502M..N, and A39005F.)

Enumeration representation clauses containing noncontiguous values for character types are not
supported. (See tests C355071..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing representational values other than
(FALSE => 0, TRUE => 1) are noi supported. (See tests C355081.J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types are supported with the restriction imposed
in Appendix F, point F.4. (See test A39005B.)

Length clauses with STORAGE-SIZE specifications for access types are supported. (See tests A39005C
and C87B62B.)

Chapter 2-Page 5 of 7



CONFIGURATION INFORMATION

Length clauses with STORAGESIZE specifications for task types are supported. (See tests A39005D
and C87B62D.)

Length clauses with SMALL specifications are supported . (See tests A39005E and C87B62C.)

Record representation clauses are supported with the restriction imposed in Appendix F, point F.4. (See
test A39005G.)

Length clauses with SIZE specifications for derived integer types are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is not supported for procedures. The pragma INLINE is not supported for
functions. (See tests LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUENTIAL_10 cannot be instantiated with unconstrained array types and record types
with discriminants without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with unconstrained array types and record types with
discriminants without defaults. (See tests AE2101H, EE2401D, and EE2401G.)

The director, AJPO, has determined (AI-00332) that every call to OPEN and CREATE must raise
USE ERROR or NAME ERROR if file input/output is not supported. This implementation exhibits
this behaviour for SEQUENTIAL IO.

The director, AJPO, has determined (AI-00332) that every call to OPEN and CREATE must raise
USE ERROR or NAME ERROR if file input/output is not supported. This implementation exhibits
this behaviour for DIRECT_10.

Chapter 2-Page 6 of 7



CONFIGURATION INFORMATION

The director, AJPO, has determined (AI-00332) that every call to OPEN and CREATE must raise
USEERROR or NAMEERROR if file input/output is not supported. This implementation exhibits
this behaviour for TEXT_10.

Generics.

This compiler requires that a generic unit's body be compiled prior to instantiation.

Generic subprogram declarations and bodies can be compiled in separate compilations. (See tests
CA1012A and CA2009F.)

Generic package declarations and bodies can be compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled in separate compilations. (See test CA3011A.)

Chapter 2-Page 7 of 7



CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was tested, 27 tests had been withdrawn
because of test errors. The AVF determined that 437 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 174 executable tests that use file operations
not supported by the implementation. Modifications to the code, processing, or grading for 31 tests were
required to successfully demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 103 1049 1440 17 11 44 2664

Inapplicable 6 3 413 0 7 2 431

Withdrawn 3 2 21 0 1 0 27

TOTAL 112 1054 1874 17 19 46 3122

Chapter 3-Page 1 of 7



TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 485 538 244 166 98 141 327 129 36 234 3 68 2659

Inapplicable 14 87 136 4 0 0 2 0 8 0 0 0 185 436

Withdrawn 2 14 3 0 0 1 2 0 0 0 2 1 2 27

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WITHDRAWN TESTS

The following 27 tests were withdrawn from ACVC Version 1.9 at the time of this validation:

B28003A C35904A C37215C C41402A CC1311B
C35904B C45332A

E28005C C35A03E C37215E C45614C BC3105A
C34004A C35A03R C37215G A74016C AD1A01A
C35502P C37213H C37215H C85018B CE2401H
A35902C C37213J C38102C C87B04B CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that a compiler is not required by
the Ada Standard to support. Others may depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered each time a validation is attempted.
A test that is inapplicable for one validation attempt is not necessarily inapplicable for a subsequent attempt.
For this validation attempt, 437 tests were inapplicable for the reasons indicated:

A39005B is not applicable because the particular value chosen in this test is not supported by this
compiler.

A39005G is not applicable because the particular value chosen in this test is not supported by this
compiler. Chapter 3-Page 2 of 7



TEST INFORMATION

C355021.J (2 tests), C35502M..N (2 tests), C355071J (2 tests), C35507M..N (2 tests), C35508I..J (2
tests), C35508M..N (2 tests), A39005F, and C55B16A use enumeration representation clauses which
are not supported by this compiler.

C35702A uses SHORT-FLOAT which is not supported by this implementation.

The following tests use SHORTINTEGER, which is not supported by this compiler:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D

C45231D requires a macro substitution for any predefined numeric types other than INTEGER,
SHORT INTEGER, LONG INTEGER, FLOAT, SHORT-FLOAT, and LONG-FLOAT. This compiler
does not support any such types.

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base types which are not
supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed base types which are not supported
by this compiler.

B86001D requires a predefined numeric type other than those defined by the Ada language in package
STANDARD. There is no such type for this implementation.

C86001F redefines package SYSTEM, but TEXT_10 is made obsolete by this new definition in this
implementation and the test cannot be executed since the package REPORT is dependent on the
package TEXT10.

CA2009C and CA2009F compile the bodies of generic units separately and folowing a compilation that
contains instantiations of those units. This compiler requires that a generic units's body be compiled
prior to instantiation, and so the unit containing the instatiations is made obsolete upon the compilation
of the unit containing the bodies. The test fail to link.

CA3004E, EA3004C, and LA3004A use the INLINE pragma for procedures, which is not supported by
this compiler.

CA3004F, EA3004D, and LA3004B use the INLINE pragma for functions, which is not supported by
this compiler.

AE2101C, EE2201D, and EE2201E use instantiations of package SEQUENTIAL 10 with unconstrained
array types and record types having discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G Q'RIMntfiiscp@ckage DIRECT 10 with unconstrained array
types and record types having discriminants without defaults. These instantiations are rejected by this
compiler.



TEST INFORMATION

The following 174 tests are inapplicable because sequential, and direct access files are not supported.

CE21O2C CE2102G..H(2)CE21o2K CE2104A..D(4)
CE2IO5A..B(2) CE2IO6A..B(2) CE21O7A..l(9) CE2108A..D(4)
CE21O9A..C(3) CE21IOA..C(3) CE21 11A..E(5) CE211 1G..H(2)
CE2I11A..B(2) CE'2201A..(3) CE22O1F..G(2) CE2-204A..B(2)
CE-1208B CE2210A CE24O1A..C(3) CE24O1E..F(2)
CE2404A CE2405B CE2406A CE2407A
CE2408A CE2409A CE2410A CE241 IA
AE-3101A CE3102B EE3102C CE3103A
CE3104A CE3107A CE-31O8A..B(2) CE-11O9A
CE3110A CE3111A..E(5) CE3112A..B(2) CE3114A..B(2)
CE3115A CE3203A CE33O1A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE-3403E..F(2)
CE3404A..C(3) CE-3405A..D(4) CE3406A-.D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..F(4) CE3410A
CE341OC..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE36OSA..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..O(3) CE3706D CE3706F
CE3804A..E(5) CE3804G CE-38041 CE3804K
CE3804M CE-38OSA..B(2) CE3806A CE3806D..E(2)
CE39OSA..C(3) CE3905L CE3906A..C(3) CE3906E..F(2)

Results of running a subset of these tests showed that the proper exceptions are raised for unsupported
file operations.

The following 201 tests require a floating-point accuracy that exceeds the maximum of 15 digits supported
by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L.. (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

Chapter 3-Page 4I of 7



TEST INFORMATION

3.6 TEST, PROCESSING. AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing, or evaluation in order to compensate
for legitimate implementation behaviour. Modifications are made by the AVF in cases where legitimate
implementation behaviour prevents the successful completion of an (otherwise) applicable test. Examples of
such modifications include: adding a length clause to alter the default size of a collection; splitting a Class B test
into subtests so that all errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behaviour that wasn't anticipated by the test (such as raising one exception instead of
another).

Modifications were required for 29 Class B tests, and 2 Clas C tests.

The following Class B tests were split because synta: errors at one point resulted in the compiler not
detecting other errors in the test:

B27005A B28001R B28001V B55A01A B56001H
B71001B B71001C B71001D B7100LE B71001F
B710011 B71001K B71001N B710010 B71001P
B71001Q B71001R B71001U B71001W B95077A
B97101A B97101E BA3006A BA3006B BA3007B
BA3008A BA3008B BA3013A BC1202E

The following executable tests were split because the size of the code generated exceeded the segment
limit on the target for a compilation unit:

C35A06N CC1221A

REPORT BODY was modified by replacing all the occurances in the source code of TEXT IO with
REPORT 10. REPORT 10 is a subset of TEXT_10 that directs standard input and output to the host
computer via the RS232 connector.

C45651A requires that the result of the expression in line 227 be in the range given in line 228;
however, this range excludes some acceptable results. This implementation passes all other checks of
this test, and the AVO ruled that this test is passed.

Chapter 3-Page 5 of 7



TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by the CAPTACS-E286 was submitted
to the AVF by the applicant for review. Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the e:pected behaviour on all inapplicable tests.

3.7.2 Test Method

Testing of the CAPTACS-E286 using ACVC Version 1.9 was conducted on-site by a validation team from the
AVF. The configuration consisted of a MICROVAX host operating under MICROVMS, V4.6, and a INTEL
80286 bare computer target. The host and target computer. were linked via an RS232C Serial Link.

A magnetic tape containing all tests was taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized before being written to the magnetic tape. Tests
requiring modifications during the pre- validation testing were not included in their modified form on tfi
magnetic tape.

The contents of the magnetic tape were not loaded directly onto the host computer. The files were loaded from
the magnetic tape to an RA60 disc via a VAX 111750. The RA60 is dual ported to the MICROVAX. Files
were copied from the RA60 to the fixed user disc on the MICROVAX.

After the test files were loaded to disk, the full set of tests was compiled and linked on the MIQROVAX, and
all executable tests were run on the INTEL 80286. Object files were linked on the host computer, and
executable images were transferred to the target computer via an RS232 Serial Link. Results were printed from
the VAX 111750 after transferring them from the host computer via the RA60 as above.

Chapter 3-Page 6 3f 7



TEST INFORMATION

The compiler was tested using command scripts provided by CAP Industry Limited and reviewed by the
validation team. The compiler was tested using all dcfault .witch settings except for the following:

Switch Effect

/LIST Produce a compilation listing file.
/INPUTLIST Compile a list of source files.
/LIB FILE Specify library file name.

Tests were compiled, linked, and executed (as appropriate) using a single host computer and a single target
computer. Test output, compilation listings, and job logs were captured on magnetic tape and archived at the
AVF. The listings examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Orion Court, Kenavon Drive, Reading and was completed on 27 May 1988.

Chapter 3-Page 7 of 7



APPENDIX A

DECLARATION OF CONFORMANCE

CAP Industry Limited has submitted the following Declaration of
Conformance concerning the CAPTACS-E286.

App A-Page 1 of 5



DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor : CAP Industry Limited

Ada* Validation Facility : National Computing Centre Limited, UK

Ada Compiler Validation Capability (ACVC) Version: 1.9

BASE CONFIGURATION

Base Compiler Name : CAPTACS-E286
Version : V2.1
Host Architecture : MICROVAX II
Host Operating System : MICROVMS
Version : 4.6
Target Architecture : INTEL iAPX 80286 (protected mode)
Target Operating System: bare computer

I, the undersigned, representing CAP Industry Limited, have implemented
no deliberate extensions to the Ada Language Standard ANSI-
MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that CAP Industry Ltd is the owner of record of the Ada
language compiler(s) listed above and, as such, is responsible for
maintaining said compiler(s) in conformance to ANSI-MIL-STD-1815A. All
certificates and registrations for Ada language compiler(s) listed in
this declaration shall be made only in the owner's corporate name.

_____,__/,__________Date: 25-'-
Name of Person signing
Title : PrwdCA 4ic-wr

*Ada is a registered trademark of the United States Government (Ada
Joint Program Office).

App A-Page 2 of 5



DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor : CAP Industry Limited

Ada* Validation Facility : National Computing Centre Limited, UK

Ada Compiler Validation Capability (ACVC) Version: 1.9

BASE CONFIGURATION

Base Compiler Name : CAPTACS-E286
Version : V2.1
Host Architecture : MICROVAX II
Host Operating System : MICROVMS
Version : 4.6
Target Architecture : INTEL iAPX 80286 (protected mode)
Target Operating System: bare computer

DERIVED COMPILER REGISTRATION

Derived Compiler Name : CAPTACS-E286
Version : 2.1
Host Architecture : MICROVAX II
Host operating System : MICROVMS
Version : 4.6
Target Architecture : INTEL 80386
Target Operating System: bare computer

I, the undersigned, representing CAP Industry Limited, have implemented
no deliberate extensions to the Ada Language Standard ANSI-MIL-STD-
1815A in the compiler(s) listed in this declaration. I declare that
CAP Industry Ltd is the owner of record of the Ada language compiler(s)
listed above and, as such, is responsible for maintaining said
compiler(s) in conformance to ANSI-MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this declaration
shall be made only in the owner's corporate name.

__ u_ Date: 26 - -

Name of Person signing
Title : Pr C , C " VicX {

*Ada is a registered trademark of the United States Government (Ada
Joint Program Office).

App A-Page 3 of 5



DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing CAP Industry Ltd, take full
responsibility for the implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of the
final Validation Summary Report. I further agree to continue to comply
with the Ada trademark policy, as defined by the Ada Joint Program
Office. I declare that all of the Ada language compilers listed, and
their host/target performance, are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

____ ___ ___ ___ ___Date: lG - -
Name of Person signing :

Title : P(C Qcx M cj, eQf

Name of Base Compiler Owner: CjAp

App A-Page 4 of 5



DECLARATION OF CONFORMANCE

Notes on completion of Declaration of Conformance and Owner's

Declaration.

Owner of record means the legal owner of the compiler.

App A-Page 5 of 5



CAP

APPENDIX F OF THE Ada STANDARD

The only allowed inplementation dependencies correspond to
inplementation-dependent pragmas, to certain machine-dependent
canventions as mentioned in in Chapter 13 of the MIL-STD-1815A, and to
certain allowed restricticns on representation clauses. The
ximpemntation-dependent characteristics of CAPTACS-E286 V2.1 are

described in the following secticns which discuss topics one through
eight as stated in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). Inplementation-specific portions of the package

STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONGINTEMER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range--3.37E38 .. 3.37E38;
type LNGFLOAT is digits 15 range -1.67E308 .. 1.67E308;

type DURATION is delta 2**-14 range -86400.0 .. 86400.0;
-- DXRATION'small = 2**-14

end SAARD;



ncLEMENWIOK DEPENDENT ISSUES

F APPCPIX F

The Ada language definition allows for certain target dependences in
a controlled manner. This appendix, called Appendix F as prescribed in
the URM, describes inplementation-dependent characteristics of the
CAPIACS-E286 system.

F. 1 Implementation-Dependent Pragmas

The implementation-dependent pragma COMMENT is used for embedding a
sequence of characters into the object code. The syntax is:

pragma OOMME~1 ( <string-literal> );

where: <string-literal> represents the characters to be embedded
in the object code.

Pragma CMENT may appear at any location within the source code of a
cqpilaticn unit. Any number of comments may be entered into the object
code using this method.

The iplementation-dependent pragma INIEMUPM is used for
function-mapped optimizations of interrupts as described in Section
12.11.1.5. The syntax is:

pragma MEM~RPT (FWM'rIONMAPIf);

F.2 Implementation-Dependent Attributes

There are no inplementation-dependent attributes.

F.3 Package SYST (

The current specification of the package is provided below.

package SYSTD( is

type SBG OFFSET is now nIrEGER;
type 826SEIBC1M is nev MMMGE;
type XRsW is private:
type OUDPGRN VW= is private;
type MM is (CiMME286) ;
SYS= MW : constant RW := CPMCS E286;
UIlm muT : constant := e;

MM RY iZE : constant := 2**24;

-Sytm-Dqendent Namd Nubers:

MW I in constant :=-(2**31);
DI' : constant : (2**31) - 1;



ILEMENTATION DEPENDENT ISSUES

MAX DIGITS : constant :=15; % A
MAXMANTISSA : constant := 31;
F DELTh : constant := 1.0 / (2**( MAX MANTISSA - 1 ));
TICK : constant := 1.0 / (2 ** 10);

--Other System-Dependent Declarations:

subtype PRIORITY is INTEGER range 0..15:

private

- Types ADDRESS and SUBPROGRAM VALUE are private

end SYSTEM;

F. 4 Representation Clauses

CAPI A:-E286 supports the following representation clauses:

1) length clauses: for enumeration and derived integer types
'SIZE attribute (L0R4 13.2(a))

2) Iength clauses: for access types 'lORAGESIZE attribute
(rPM 13.2 (b))

3) Length clauses: for task types ' STORAGESIZE attribute
(IM 13.2 (c))

4) Lenth clauses: for fixed point types 'SMALL attribute

(IRM 13.2 (d))

5) Record representation clauses (LM 13.4)

6) Address clauses for objects and entries (IR4 13.5(a))

Note: CAPIACS-E286 has a restriction that allocated objects rust have
a irdnimm allocation size of 16 bits, and the miniumi aligrmnt for a
record representation clause is 16 bits.

F.5 IUmlementation-Generated Nams

There are no inplsentation-generated names denoting
irplementation-deper-ent n .

F. 6 AM ess clause Evreesion Interpretation

Expressions that appear in Address specifications are interpreted as
the address of the first storage unit of the cbject.



DXPLDWTION DEPENDOU ISSUES

F. 7 Unchecked Conversion Restrictions CW P

Unchecked conversions are allowed between types (or subtypes) T1 and
T2 provided that:

1) they are not unconstrained record or array types.

F. 8 Implementation-Dependent Characteristics of the I/O Packages

1. Instantiations of DIRECT 10 and SEqUaIAL_1O are supported

with the following exceptions:

* unconstrained array types

* unconstrained types with discriminants without defaults

2. There is no support for a file system. DIRECT IO always
raises a run-time exception. SBWDnT ALIO and =IT_1O are
supported only for sequential devices.

Any attempt to create or open a named or temporary file
(other than the specific named sequential devices) raises

NAME _RRC if the file name is greater than 12 characters
long, and USEEm otherwise.

3. In DIEC_10, the type OUNT is defined as follows:

type couNT is range 0..2147483647;

4. In TEXr_10, the type OWNT is defined as follows:

type CoUNT is range 0. .2147483645;

5. In TEXr_10, the subtype FIELD is defined as follows:

subtype FID is fnaMGER range o..1000;

6. Package I.W IEVEL_10 is defined for the following types:

devicetype:

type PORT ADDRESS is new INTEGE;

data types:

type BYTE is rang. 0..255;
type IWORD is range nIrEfirst.. Zna'EM' last;
type MDThETZ _AMM is array (NTURAL range c>)

of DW1,, BYTE:
type MM WOW RRAPY is array (MTURAL rang* <>)

of . WMW;



IwLENENToN DEN W ISSUES CAP
F. 9 Package MkCDn_ CODE

Package MACE_CODE is not supported.

F. 10 Language-Defined Pragmas

The language-defined pragmas aIOTROIED, ELABORATE, IM TFACE
(ASS DBLY_INTRFACE), LIST, PACK, PAGE, PRIORIIY, SHARED and SUPPRESS are
supported. The other language-defined pragmas, if included in Ada
source, will have no effect.



fIWZThTION DENDWT ISSUES

MIS PAGE lITMIONALLY I=T BLWN



APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such as the maximum length of an
input line and invalid file names. A test that makes use of such values is identified by the extension .TST in
its file name. Actual values to be substituted are represented by names that begin with a dollar sign. A value
must be substituted for each of these names before the test is run. The values used for this validation are given
below.

NameandMeaning Definition_

$BIGID1 1..199=>'A',200=>'1'
Identifier the size of the maximum input line length
with varying last character.

$BIG ID2 1..199=>'A',200=>'2'
Identifier the size of the maximum input line length
with varying last character.

$BIG ID3 Identifier the size of 1..100=>'A',101=>'3',
the maximum input line length with varying middle 102..200=>'A'
character.

$BIG ID4 1..100= >'A',101 = >'4',102..200= >'A'
Identifier the size of the maximum input line length
with varying middle character.

$BIG INT LIT L. 197 = >'0', 198..200 = >'298'
An integer literal of value 298 with enough leading
zeroes so that it is the size of the maximum line
length.

SBIG REALLIT .. 194 = >'0', 195..200 = > '69.OE1'
A universal real literal of value 690.0 with enough
leading zeroes to be the size of the maximum line
length.

App C-Page 1 of 4



Name and Meaninc_________ Definition____________

$BIG_-STRINGi I1=>'2'.2.. 01 =>'A',.102-'"
A string literal which when catenatcd with
BIGSTRING2 yields the image of BIG ID1.

$BIG STRING2 I = >"".2.. 100 =>'A', 10L..102 >'I"'
A string literal which when catenated to the end of
BIG STRING1 yields the image of BIG ID1.

$BLANKS 1..180=>'
A sequence of blanks twenty characters less than the
size of the maximum line length.

SCOUNT-LAST 2147483645
A universal integer literal whose value is
TEXT IO.COUNT'LAST.

$FIELD-LAST 1000
A universal integer literal whose value is
TEXT IO.FIELD'LAST.

$FILE NAMEWITHBADCHARS X}]!@#S &-Y
An external file name that-either contains invalid
characters or is too long.

SFILENAMEWITHWILDCARDCHAR XYZ*
An external file name that either contains a wild card
character or is too long.

$GREATER_-THAN_-DURATION 100000.0
A universal real literal that lies between
DURATION'BASE'LAST and DURATION'LAST or
any value in the range of DURATION.

$G REATER J HAN DU RATION BASE LAST 10 000 000.0
A universal real literal that is greater than
DURATION'BASE'LAST.

App C-Page 2 of 4



NameandMeaning Definition_

$ILLEGALEXTERNALFILENAMEI BADCHARACTER* /%
An external file name which contains invalid
characters.

$ILLEGALEXTERNALFILENAME2 1..120= >'A'
An external file name which is too long.

$INTEGER FIRST -32768
A universal integer literal whose value is
INTEGER'FIRST.

$INTEGERLAST 32767
A universal integer literal whose value is
INTEGER'LAST.

$INTEGERLASTPLUS 1 32768
A universal integer literal whose value is
INTEGER'LAST+ 1.

$LESS -THANDURATION -10)_.000.0
A universal real literal that lies between
DURATION'BASE'FIRST and DURATION'FIRST
or any value in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -10_000000.0
A universal real literal that is less than
DURATION'BASE'FIRST.

$MAX DIGITS 15
Maximum digits supported for floating-point types.

$MAXIN LEN 200
Maximum input line length permitted by the
implementation.

SMAX INT 2147483647
A universal integer literal whose value is
SYSTEM.MAXINT.

App C-Page 3 of 4



NameandMeaning Definition

$MAXINT_PLUS_ 1 2147483648
A universal integer literal whosc value is
SYSTEM.MAXINT+1.

$MAXLEN_I NTBASED LITERAL 1-2 = >'2#',3..197 >'0',
A universal integer based li eral whose value is 198.200=>'11#'
2#11# with enough leading zeroes in the mantissa to
be MAXINLEN long.

$MAXLEN REALBASEDLITERAL 1..3=>'16#',4..196=>'0',
A universal real based literal whose value is 16:F.E# 198..200= >'F.E#'
with enough leading zeroes in the mantissa to be
MAXIN LEN long.

$MAXSTRING LITERAL I = >'"',2..199= >'A'.200- >
A string literal of size MAXINLEN, including the
quote characters.

SMIN INT -2147483648
A universal integer literal whose value is
SYSTEM.MININT.

SNAME SHORT SHORTINTEGER
A name of a predefined numeric type other than
FLOAT, INTEGER, SHORTFLOAT,
SHORT INTEGER, LONGFLOAT or
LONGINTEGER.

SNEG BASED INT 16#FFFFFFFE#
A based integer literal whose highest order nonzero
bit falls in the sign bit position of the representation
for SYSTEM.MAX INT.

App C-Page 4 of 4



APPENDIX D

WITHDRAWN TESTS

Some tests arc withdrawn from the ACVC because they do not conform to the Ada Standard. The following
27 tests had been withdrawn at the time of validation testing fbr the reasons indicated. A reference of the form
"Al-ddddd" is to an Ada Commentary.

B28003A: A basic declaration (line 36) wrongly follows a later declaration.

E28005C: This test requires that 'PRAGMA LIST (ON*);' not appear in a listing that has been suspended
by a previous "pragma LIST (OFF);"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ALMP.

C34004A: The expression in line 168 wrongly yields a value outside of the range of the target T, raising
CONSTRAINT-ERROR.

C35502P: The equality operators in lines 62 and 69 should be inequality operators.

A35902C: Line 17's assignment of the nominal upper bound of a fixed point type to an object of that type
raises CONSTRAINT-ERROR for that value lies outside of the actual range of the type.

C35904A. The elaboration of the fixed-point subtype on line 28 wrongly raises CONSTRAINT-ERROR,
because its upper bound exceeds that of the type.

C35904B: The subtype declaration that is expected to raise CONSTRAINT ERROR when its compatibility
is checked against that of various types passed as actual generic parameters, may in fact raise
NUMERIC-ERROR or CONSTRAINT-ERROR for reasons not anticipated by the test.

C35A03E: This test assumes that attribute 'MANTISSA' returns 0 when applied to a fixed-point type with
a null range, but the Ada Standard doesn't support this assumption.

C35A03R: This test assumes that attribute 'MANTISSA' returns 0 when applied to a fixed-point type with
a null range, but the Ada Standard doesn't support this assumption.

App D Page 1 of 2



WITHDRAWN TESTS

C37213H: The subtype declaration of SCONS in line 1(0 is wrongly expected to raise an exception when
elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSTRAINTERROR.

C37215C: Various discriminant constraints are wrongly expected to be
C37215E: incompatible with type CONS.
C37215G:
C37215H:

C38102C: The fixed-point conversion on line 3 wrongly raises CONSTRAINT-ERROR.

C41402A. 'STORAGE SIZE' is wrongly applied to an object of an access type.

C45332A: The test expects that either an expression in line 52 will raise an exception or else
MACHINE-OVERFLOWS is FALSE. However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of the operands, and
MACHINE-OVERFLOWS may still be TRUE.

C45614C: REPORTIDENTINT has an argument of the wrong type (LONG-INTEGER).

A74016C: A bound specified in a fixed-point subtype ded285618fBlies outside that calculated for the base
type, raising

C87B04B: CONSTRAINT ERROR. Errors of this sort occur re lines 37 and
CC1311B: 59, 142 and 143, 16 and 48, 252 and 253 of the four tests respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be incorrect; they are correct.

AD1A01A. The declaration of subtype INT3 raises CONSTRAINT-ERROR for implementations that select
INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 and 117 contain the wrong values.

CE3208A: This test expects that an attempt to open the default output file (after it was closed) with mode
IN FILE raises NAMEERROR or USE-ERROR; by Commentary AI-00048, MODE-ERROR
should be raised.

App D Page 2 of 2


